

Remote Vibrotactile Feedback

A Microprocessor Based Design

Cody Hogan, Zachary Pritchett & Camilo Tejeiro

12/10/2011

EE 478

The following report details the development of a system designed to control a manipulator using

electromyography and provide vibrotactile feedback to upper limb amputees based on applied force.

 Hogan, Pritchett & Tejeiro

1 | P a g e

Individual Contributions:

Cody Hogan

� Design Phase (UML; Pseudo Code; etc.) ∗ 30 Hours

� Hardware ∗ 40 Hours

� Coding ∗ 15Hours

� Report ∗ 5 Hours

Zachary Pritchett

� Hardware ∗ 40 Hours

� Coding ∗ 40 Hours

� Debugging(CCS) ∗ 20 Hours

� Report ∗ 4 Hours

Camilo Tejeiro

� Hardware ∗ 40 Hours

� Coding ∗ 40 Hours

� Debugging(CCS) ∗ 25 Hours

� Report ∗ 3 Hours

 Hogan, Pritchett & Tejeiro

2 | P a g e

Table of Contents

ABSTRACT .. 5

INTRODUCTION ... 5

DISCUSSION OF THE LAB ... 6

Requirements Specification .. 6

System Description (Summary) ... 6

Specification of External Environment ... 6

System Input and Output Specification .. 6

Inputs .. 6

Outputs ... 6

User Interface ... 7

Use Case Diagrams .. 8

Timing Constraint Requirements .. 12

Operating Specifications ... 12

Reliability and Safety Specification ... 12

Design Procedure .. 12

Summary ... 12

High Level View ... 12

Pseudo Description of Functions .. 13

Timing Constraints .. 14

Error Handling ... 14

Software Implementation ... 14

High Level Architecture ... 14

Functional Blocks .. 14

Discussion of Specific Tasks .. 15

EMG Acquisiton ... 15

Wireless Protocol .. 15

Wireless Transmission... 16

Wireless Reception ... 16

Vibrotactile Transducer Control .. 18

 Hogan, Pritchett & Tejeiro

3 | P a g e

Robotic Manipulator ... 18

Force Feedback ... 19

Flow of Control .. 19

Data and Control Flow .. 20

Sequence Diagram .. 22

Design Choices .. 23

EMG ... 23

Wireless Protocol .. 24

Wireless Transmission... 24

Wireless Reception ... 24

Vibrotactile Transducer Control .. 24

Robotic Manipulator ... 25

Force Feedback ... 25

Hardware Implementation ... 25

Block Diagram ... 25

Discussion of Modules .. 25

EMG ... 25

Wireless Communication .. 26

Robotic Manipulator ... 26

Force Feedback ... 26

Vibrotactile Transducer Control .. 27

Design Choices .. 27

EMG ... 27

Robotic Manipulator ... 28

Force Feedback ... 28

Vibrotactile Transducer Control .. 28

Testing ... 28

Test Plan .. 28

Test Specification .. 29

Test Cases .. 30

Results ... 31

Error Analysis .. 35

 Hogan, Pritchett & Tejeiro

4 | P a g e

Summary ... 35

Conclusion ... 35

Appendicies ... 36

Appendix A: Bill of Materials ... 36

Appendix B: Schematics .. 37

Appendix C: Gant Chart... 38

Appendix D: Sources .. Error! Bookmark not defined.

Appendix E: Code .. 39

Tactor and EMG Control Module Code ... 39

Manipulator and Force Control Module Code .. 44

References .. 49

 Hogan, Pritchett & Tejeiro

5 | P a g e

ABSTRACT

This report details the design of a remote vibrotactile feedback system for upper limb amputees. The

project went from conception to working prototype in only five weeks including the formulation of

specifications, a design, and implementation and testing. The project was centered around an MSP430

microcontroller, and utilized various discrete hardware elements. It was rigorously tested against

various test cases to verify functionality. These tests verified that the design met overall system

specifications for performance and functionality, including timing. Unfortunately, the system drew much

more power than originally desired, a side effect of the vibrotactile transducer and servo that had to be

used to guarantee accurate outputs. There was also a scheduling issue between the network and the

control of the robotic manipulator. This sometimes resulted in the jittering of the robotic manipulator.

INTRODUCTION

There are over 387,500 upper limb amputees in the United States of America, with hundreds of

thousands more around the world. The causes range from traumatic injury to circulatory disorders to

birth defects. While prosthetics have made vast improvements in both dexterity and cosmetics in the

past decade, upper limb amputees have expressed the need for sensory feedback to aid daily motor

tasks and object manipulation, yet tactile feedback in upper limb prosthetics is still a relatively infant

technology. The purpose of this project was to develop a prototype to provide remote vibrotactile

feedback to upper limb amputees. Further goals of this project are to provide the afore mentioned

functionality in a low power efficient battery operated system that is robust enough for use on the

human body, while maintaining economic affordability (typical prosthetics range from $10,000 to over

$57,000).

When a person moves an appendage, electrical activity is produced by skeletal muscles. In order to

reproduce natural hand movements, this project uses electromyography (EMG) to tap into this potential

and provide control to the prosthetic fingers (referred to as a robotic manipulator). The project was

designed around the MSP430 RF2500, a low power microcontroller from Texas Instruments (TI).

Because users do not want to hassle with wires, wireless transmission of data between the robotic

manipulator to the device on the body was completed using RF communications. Force sensitive

resistors (FSR’s) on the fingers provide feedback to the user about the amount of pressure applied. This

feedback is reported in the form of a vibrotactile located on the upper arm.

This project was taken from conception to functioning prototype in the course of 5 weeks. This included

formulating a system requirements specification, a design specification and implementation and

prototyping. All software for the system was coded in C using Code Composer Studio 4, a free IDE

provided by TI and modeled around Eclipse. Multiple pieces of hardware including digital to analog and

analog to digital converters, op-amps and diff-amps were utilized to provide the required functionality.

Various pieces of lab equipment were also utilized in the development of this project including a

Tektronix logic analyzer and oscilloscope, along with a digital multi-meter, and DC power supply.

 Hogan, Pritchett & Tejeiro

6 | P a g e

DISCUSSION OF THE LAB

Requirements Specification

System Description (Summary)

This specification describes and defines the basic requirements for a remote vibrotactile feedback

system for upper limb amputees. The system is to be able to measure the force with which a prosthetic

finger grips or presses on an object and transmit this force wirelessly to a controller located on a remote

location on the body. Surface EMG electrodes are attached to the user to enable the remote

manipulation of a servo controller end effector. The controller must then relay force exerted by the end

effector to a vibro-tactile transducer to provide feedback the user. The system is to be low cost, low

power and robust enough for use on the human body.

Specification of External Environment

They system is to operate in a consumer environment, both indoors and outdoors, under residential

temperature and lighting environment. The unit will scavenge solar power as well as battery operation.

System Input and Output Specification

Inputs

The system shall be able to measure the following signals. An actuating force from a robotic limb, and

EMG from a user forearm.

 Actuating Force:

• Minimum: .1 N

• Maximum: 10 N

o Tolerance: ± .05 N

Electromyography (EMG):

• Minimum : 100 µV

• Maximum : 2 mV

o Tolerance: ±50 µV

Outputs

The system shall measure and output the following signals. The vibrations go to a vibrotactile to provide

force feedback while the PCM relays the actuated force input to a servo for control of a simulated

robotic hand.

 Vibrations (as sine waves at 250 Hz):

• Minimum: 0 V

• Maximum: 5 V

Tolerance: ± 100 mV

 Hogan, Pritchett & Tejeiro

7 | P a g e

Pulse Coded Modulation (for controlling the gripping servo)

• 1 to 2 ms pulses @ 3.6 V

o Pulse width Tolerance: ±10µsec

User Interface

For this system prototype the user shall be able to send measurements from an EMG sensor to a

prosthetic limb and receive pressure feedback via a tractor. The EMG sensor will consist of 3 discrete

sensors, one or around the elbow to provide ground, and two above the bicep to provide a voltage

difference. A tactor will also be located on the body, most likely on the chest or upper arm. A diagram of

the setup for this user interface is provided below

Figure 1: Local Interface

The data collected from the EMG sensors will then be used by a remote robotic manipulator pictured

below. The EMG sensor will control the position of the arms, and the user can manipulate the location

and orientation of the manipulator in order to utilize the arms.

 Hogan, Pritchett & Tejeiro

8 | P a g e

Figure 2: remote interface

For this initial prototype the user will have power of the following switches located on the local

controller:

• Power: The user will be able to conserve power by turning the system on or off for extended

periods of time such as at night.

• Feedback: The user will be able to enable or disable the tactor using a switch. This will block it

from vibrating at all regardless of the amount of pressure on the system.

The user will also interact with the system via four LEDs, two on the remote manipulator and 2 on the

local controller. These buttons will display the following status:

• LED1: Network Connectivity

• LED2: Robotic error

• LED3:Feedback Error

• LED4: ON/OFF

Use Case Diagrams

The Use Cases for the system are given in the following diagram. The user can make use of either the

system power push button or the EMG measurement, to power up/down the system or control the

robotic manipulator respectively, upon operation the robotic manipulator makes use of the user’s

muscular activity to open or close a gripper around a plastic cup, the force measurement module then

sends the gripper force to a feedback module which uses this data to deliver proportional vibration to

the user.

 Hogan, Pritchett & Tejeiro

9 | P a g e

Amputee
Master

System

Start Network

Measure Force

VibroTactile
Feedback

Measure EMG

Control Network

reset

System Power

Robotic Manipulator

EMG Measurement the EMG measurement system will be comprised of two EMG surface electrodes,

referenced to the user’s elbow as the ground node. The user will have the ability to flex and extend his

wrist to control the griping force in a robotic manipulator. These electrodes produce a voltage

difference, which is then amplified and cleaned of noise.

 Hogan, Pritchett & Tejeiro

10 | P a g e

EMG Measurement

Wrist Flexion
Measurement

Wrist Extension

Measurement

USES

USES

Exception: It the system fails the user will need to reconnect the electrodes at further distances to

create a large potential. If the system still fails to register this, reset the master module.

System Power the system power module involves the use of a push button to power down the system

and put the hardware into the lowest power consumption mode, and when pushed again the user will

be able to reactivate the system to its normal operation.

System Power

Power Up Circuit

Power Down Circuit

USES

USES

Exception: If the system continues to operate at full power after it has been powered down, or operate

at power down even though it has been repowered, use the reset. This will take it back to initial stages

and reboot the system.

Robotic Manipulator the robotic manipulator will be controlled directly by the user’s flexion and

extension and will provide a gripping force against a fragile plastic cup, upon successive training trials

the user will be able to control the amount of force and grab the cup without breaking it.

Robotic Manipulator

Grip Object

Release Object

USES

USES

 Hogan, Pritchett & Tejeiro

11 | P a g e

Exception: if the manipulator fails to properly grip or release, the user will need to try again. If it

continues to operate an LED will flash at a one second rate indicating to reset the system.

Force Measurement the force measurement system will record forces at the tip of the robotic

manipulator and increase relative to the pressure applied to the plastic cup.

Force Measurement

Measure Grip Force

USES

Exception: if the force is not properly relayed an LED will turn on. In this case the master will reset the

slave that is driving the force sensor and try again.

Vibrotactile Feedback The system will continuously use the data provided by the force sensors in real

time to deliver vibration as a frequency of differing amplitudes to a tactor located somewhere on the

human body.

Vibrotactile Feedback

Modulated Feedback
Generator

USES

Exception: if the feedback is not properly received it will flash a red LED on the master indicating to

restart the system.

Start Network The start network is triggered on power on or reset. It tells the master to initialize the RF

network with the slave.

Exception: If the network fails to initialize, the master will continue to try to find the remote node

indefinitely. Make sure the remote has power, and reset the system.

Control Network: The local node will control the RF network by sending and receiving data from the

remote node. It will have the power to put the slave in low power mode.

Exception: If control network fails reset the system.

Reset the reset command will take the system back to its initial state.

 Hogan, Pritchett & Tejeiro

12 | P a g e

Exception: if reset fails, unplug the batteries, wait 10 seconds reinstall them and try again.

Timing Constraint Requirements

The system must provide feedback with no noticeable lag. For this design it has been determined that a

150 ms delay is the limit for having the user feel an instantaneous reaction.[1] Therefore the user must

be able to activate the emg and receive back feedback within 150 ms.

Operating Specifications

The system shall operate in standard residential conditions.

� Operating temperature: 32° to 95° F (0° to 35° C)

� Nonoperating temperature: -4° to 113° F (-20° to 45° C)

� Relative humidity: 5% to 95% noncondensing

� Maximum operating altitude: 10,000 feet (3000 m)

� Power: 3.3 VDC, with a minimum battery life of 400 transmissions on one charge(doesn’t apply).

Reliability and Safety Specification

The counter shall comply with the appropriate standards

Safety: UL 60950-1, IEC 60950-1, CSA 60950-01

EMC: CISPR-11, EN55 011

MTBF: Minimum of 2 years

Design Procedure

Summary

The design of this project was influence by the specific inputs and outputs that the system was to

envelop. This included the acquisition of force exerted as well as the electromyography signal from the

user. The system needed to include hardware to process these inputs and components to generate the

corresponding outputs. The highest level constraint that needed to be addressed was human perception

of both the end effector control and vibrotactile feedback. The input to output propagation delays

needed to be less than what the user would be able to detect. This value is found to fall within 150 ms

to 200 ms [1].

High Level View

Below is a high level block diagram for our system. It is a symmetric design that involves the acquisition

of two inputs, their respective processing and then the appropriate output signal generation. Note that

the dashed lines represent wireless communication between the main control modules. TECM stands

for Tactor and EMG Control Module and MFCM stands for Manipulator and Force Control Module.

 Hogan, Pritchett & Tejeiro

13 | P a g e

Figure 3 High Level Block Diagram of System

Pseudo Description of Functions

Input Subsystem – The input subsystem enables the acquisition of 5 total signals. They include 3

electromyography signals garnered from the actuation of the user’s wrist, and 3 force signals taken at

the prosthetic end effector. These signals are then routed to the measurement subsystem.

Measurement Subsystem – This subsystem is comprised of two 10-bit analog to digital converters that

are responsible for transforming the voltages levels obtained from the input system into transferable

digital signals. It also consists of two power amplifiers used to regulate the EMG signals. The

measurement system is responsible for the respective transmission of data to the output system.

Output Subsystem – This subsystem is responsible for the generation of output signals to the two user

feedback locations. This includes the vibrotactile transducer (tactor) and the prosthetic end effector. The

two outputs will be a variable sine wave to the tactor and a PCM signal to the servo control system.

Time Base – The Local and Remote microcontrollers envelop an internal timing system that allows for

various clocks and timers. This particular system utilizes two timers clocked at 8 MHz.

Power Subsystem – The TECM and MFCM are powered using 2 1.5 V AAA batteries each. The EMG

processing circuit uses 4 1.5V AA batteries. All other modules use a 5 V supply for power.

Input Subsystem Measurement Subsystem Output Subsystem

Time Base Power Subsystem

 Hogan, Pritchett & Tejeiro

14 | P a g e

Timing Constraints

As mentioned, the main timing constraint adhered to was one regarding the time in which a human

being would be able to notice a delay in either feedback or manipulator transmission. With this

constraint in mind, it was necessary to run the microprocessors at a frequency fast enough such that the

wireless transmission would enable seamless data transfer of force feedback and end effector control.

Other supplementary timing constraints included those imposed by the digital to analog and analog to

digital converter modules. Each component had unique timing parameters necessary to perform the

appropriate calculations. These specific values are discussed further in the following sections. Links to

the corresponding data sheets are also provided in the appendices.

Error Handling

The error handling for this project was an imperative inclusion as it involves the integration of electronic

signals and the human body. At any point the user should be aware if the system has malfunctioned.

This is addressed by using the two main modules’ on board LEDs as a mechanism for alerting the user to

potential faults in the system. At any time should transmission between the two modules cease, the

LEDs on the TECM node will sequentially flash every second until communication is restored. As the

main functionally of the system is accomplished via the wireless transmission protocol, other errors such

as the malfunction of the servo control the end manipulator will trigger this error handling event.

Software Implementation

High Level Architecture

The figure below shows the high level architecture of the system as broken into modules, classes and

specific tasks.

Figure 4 Software Architecture Diagram

Functional Blocks

The table below provides insight into each of the functional blocks shown above.

 Hogan, Pritchett & Tejeiro

15 | P a g e

Table 1 Software Functional Blocks with Descriptions

Component Module Class Description

Tactor and EMG Control Module

(TECM)
----- -----

Module that ganers EMG signal and controls sine

wave output

Analog to Digital Class TECM ----- Responsible for EMG acquisition

Radio Frequency Class TECM ----- Responsible for transmit and receive classes

Output Class TECM ----- Responsible for vibrotactile transducer output

EMG Acquisition Task TECM A/D Garners EMG voltage and converts to digital value

Transmission Task TECM RF Transmits EMG digital value to MFCM

Receive Task TECM RF Receives Force value from MFCM

Tactor Control Task TECM Output Generates unfiltered 9-point sine wave for Tactor

Manipulator and Force Control Module

(MFCM)
----- -----

Module that garners Force signal and controls

servo output

Analog to Digital Class MFCM ----- Responsible for Force acquisition

Radio Frequency Class MFCM ----- Responsible for transmit and receive classes

Output Class MFCM ----- Responsible for servo control output

Force Acquisition Task MFCM A/D
Garners Force voltage and converts to digital

value

Transmission Task MFCM RF Transmits Force digital value to MFCM

Receive Task MFCM RF Receives EMG value from MFCM

Servo Control Task MFCM Output Generates PWM output for servo control

Discussion of Specific Tasks

EMG Acquisiton

The EMG signal acquisition of the system was mostly implemented using analog circuitry. However the

digitization of the analog signal was done using the 10 bit digital to analog converter integrated in the

MSP430F2274, This module was configured to execute conversion using the least power demanding

characteristics, the Analog to digital conversion was configured on pin 2.0 of the board, the reference

was taken from Vcc and the module was configured to be able to put the system in low power mode

while the conversion was running and wake up based on an interrupt to resume operations, the digital

results from the conversion were then calibrated to be as close as possible to the expected values.

Following this the ADC module was turned off and the value returned by the EMG task was the digital

EMG value.

Wireless Protocol

The transmission protocol for this system was designed to allow for bidirectional communication. Both

nodes were required to send and receive data therefore acting as transceivers, one node the

Manipulator and Force Control Module (MFCM) was required to receive force and transmit EMG data,

and the other node, the Tactor and EMG Control Module (TECM) was required to receive EMG data and

transmit force. The peer to peer scheme was used for communication with the advantages of direct

linkage between nodes, personalized addressing, interrupt driven reception of packages with receive

function subscription and an increased speed of transmission without the continuous drops of packets

 Hogan, Pritchett & Tejeiro

16 | P a g e

experienced using different schemes. The usage of this scheme required us to synchronize the linking of

both nodes upon initialization of the network. The radio was also turned on to allow for reception after

a successful link was established. After this set up was completed each node was ready for bidirectional

transmission and reception of data.

Wireless Transmission

Wireless transmission was done similarly in both nodes with some minor differences. In the node MFCM

transmission was performed continuously only restrained by the use of a network delay to determine

the rate of transmission, following this, data was broken up into two bytes which constituted the

messages to be send and then a predefined function command was used to send data. In the TECM

node the main difference was the implementation of a semaphore, which was needed since the MFCM

node started transmission and so it will always transmit first, so in the case that a packet was dropped

the TECM node could be pre empted in the middle of its transmission state thus producing unstable

results, therefore a semaphore was used to prevent transmitting and receiving at the same time.

Wireless Reception

Wireless reception was done through subscribed functions that will get called upon reception of a

packet from the other node, in the MFCM node a quick check was performed to certify the port from

which the frame was received, after checking that the port was correct the predefined function receive

was used and its return value was checked to make sure that the received data was correct, after doing

so the two bytes in the message were concatenated and the data was interpreted as a force

measurement. At the other end at the TECM the only difference was the implementation of the

semaphore to protect the receiving and transmission operations to be performed at the same time.

The pseudo code for both the transmit and receive tasks are provided below.

void main ()
{
 if (MCU clock values are not initialized)
 {
 // dont run and start alert routine
 // flash LED's
 // then enter low power mode to save energy
 }

 // blink LED 1 & 2 to indicate start up

 // configure self RF address
 if (self address is missing)
 {
 // create new random address
 }

 // use pre defined BSP init function to
 // initialize eZ MSP430 hardware.

 // start the very low power clock using
 // control register 3

 // set timer B control to capture compare mode
 // enable interrupts on match

 // set the value to compare to using CCR0 register

 // initialize the simplicity protocol

 Hogan, Pritchett & Tejeiro

17 | P a g e

 // try to join the wireless network.

 // upon failure go to low power mode and wait
 // for next time up interrrupt

 // wake up the radio module and make sure that the
 // access point node is listening for messages

 // call the link function which takes
 // care of the periodic wireless transmissions.
}
void link ()
{
 // perform a link attempt operation
 while (transmitter cannot link to receiver)
 {
 // keep trying to link and use timer B
 // value in CCR0 to wake up periodacally and attemp t
 // again
 }

 // execute forever
 while (1)
 {
 // send radio to sleep while other operations
 // are executed
 // perform analog to digital operations

 // now wake up the radio,
 // keep a running count of the number of packets to be
 // sent

 // use predefined function to send packets

 if (sending was succesful)
 // delay and flash LED's in
 // good status patterns to indicate the user
 // packets are sent

 else if(sending was unsuccesful)
 // flash LED's in bad status pattern

 // now, send the radio to sleep using pre defined f unction

 // put the MCU in low power mode, to sleep until ne xt transfer
 // time is up, leave interrupt for timer B on to kn ow when to
 // wake up

 while (the push button at the receiver has not been toggle d)
 // turn of the system completely until the button i s toggled
 // again.
 }
}
For receiver
Initialize radio address location
Stop WDT

//interupt driven
if adx match
 if new data
 take semaphore
 if semaphore
 get data
 release semaphore

 Hogan, Pritchett & Tejeiro

18 | P a g e

Vibrotactile Transducer Control

The tactor control was realized by generating an initial low amplitude sine wave. This waveform was

stored in a 9 element array called a look up table. As it was necessary to generate a unique frequency,

specifically 250 Hz, certain calculations were required. These included calculating the period of the sine

wave and the time sampling time in which the next point in the array would be processed.

���� �	
1

����
�

1

250	�

� 4	��

������� �
����

#	��	������
�

 	��

!
� 444	μ�

This means a new point from the look up table needs to be processed every 444 µs. The MSP430

microcontroller’s extensive interrupt system enabled this functionality. Using a timer driven interrupt,

each point was processed and sent to the output pins of the MSP430 and then fed serially into a high

speed digital to analog converter. The pseudo code below provides insight into this process.

sineWaveGenerator ()
{
 //Create sine wave look up table
 //Initialize interrupts
 //Set appropriate digital output direction

 If(interrupted) {For (current index of sine wave)
 {
 //Set output to value at current index using Dac fu nction()
 }

}
}
DAC function ()
{
 //Create control word and data
 //Set ~CS low
 //Shift MSB into register
 //Set SCLK high
 //Set ~CS high
 //Set SCLK low
}

Robotic Manipulator

The robotic manipulator control was realized by creating a PWM in the remote microcontroller. This was

done by setting up two timers, one running every 20 ms, and one at a variable length of 1-2 ms. Every 20

ms the micro controller would generate a high pulse of 1ms-2ms depending on the second timer, with

1ms corresponding to a servo position of 0 degrees and 2ms 180 degrees. It is best described by the

following pseudo code:

 Hogan, Pritchett & Tejeiro

19 | P a g e

Force Feedback

At the end of each arm of the robotic manipulator is a FSR which provides back the amout of preassure

experted. For the software segment of this, the analog value is sampled every 100ms and converted

from analog to digital, and then transmitted through the RF network.

Flow of Control

The system is to take analog force and electromyography signals and then route them to the

appropriate location in the output subsystem. The activities associated with the system are shown in the

following diagram.

Manipulator pseudo Code:

Initialize 20 ms timer
Initialize variable timer
Get digital EMG signal from RF coms
//Convert to servo control
servoVal = 15*EMG + 5000
set variable timer = servoVal

every 20 ms set digital out high
pull digital out low after variable
timer time

 Hogan, Pritchett & Tejeiro

20 | P a g e

Measure EMG potentials

Get wrist Flexion Potential Get Wrist Extension Potential

Power Down System

Grip Object Release Object

Flexion Mode Extension Mode

Measure Force

Provide Feedback

Data and Control Flow
Below is the data and control flow for the master. It takes in EMG pulse from the user via an EMG

sensor. This raw value is stored then converted for wireless transmission. Once it is formatted it is

 Hogan, Pritchett & Tejeiro

21 | P a g e

transmitted to the slave node. Once the save sends back data it goes to the receive process. The control

then formats this raw value and outputs it to a tactor on the human body.

User Input

EMG sensor

Control

Raw Value
RawValue

CommandAvailable

Format for

trasmission to

slave

dataAvailable

formattedMeasurements

Transmit

dataAvailable

measuredVals

Data

User Commands:
EMG PULSE 100uV-5mV

Recieve

Data

Raw Value

Format for

output

dataAvailable

Output

Data

dataAvailable

Below is the flow of control for the slave. Its behavior is very similar to that of the master. Instead of

user input, it takes in the transmitted data from the master, formats that data to control a servo. Then it

also takes inputs of pressure from sensors located on the servo arm, and formats those and send them

back to the master.

 Hogan, Pritchett & Tejeiro

22 | P a g e

wireless Input

RF reciever

Control

Raw Value
RawValue

CommandAvailable

Format output

dataAvailable

formattedMeasurements

Output

dataAvailable

measuredPreas
ure

Servo

Wireless Commands:
Force .1-10 N

Recieve

Pressure Data

Raw Value

Format for

transmission

dataAvailable

transimit

Data

dataAvailable

Sequence Diagram

Below is a sequence diagram for the parent system. It shows how a measure input from the user is

propagated through the system. It shows how each task gains control and preforms its operation and

then control moves on to the next task once it is done.

 Hogan, Pritchett & Tejeiro

23 | P a g e

Measure EMG Task format data task Transmit Task Recieve Task Convert Data Task Store Data Task Provide Feedback Task

Measure ()

format data ()

data

Transmit ()

transmit

Get Data ()

Convert Data ()

Formatted Data

Store Data ()

Data Stored

Full Data

Provide Feedback()

feedback provided

Measurement Complete

Design Choices

EMG

A few considerations were taken when converting the analog EMG data to its digital counterpart, a low

power implementation of this conversion was used to reduce the burden of power consumption on

batteries since the MSP430’s are run on AAA batteries. This tradeoff between power consumption and

speed was realizable due to the fact that sacrificing some of the conversion speed in this case was not as

critical since the upper bound on the overall timing delay of the system was human perception which

ranges from 150 – 200 mS [1] much greater than the conversion time . Another important design choice

in this section was the usage of an interrupt to wake up the system after conversion was completed.

This interrupt was used with the same purpose as the reduction in speed; it was implemented to reduce

power consumption by allowing the system to go into sleep mode until the A/D conversion was

completed.

 Hogan, Pritchett & Tejeiro

24 | P a g e

Wireless Protocol

As explained in the software implementation section, we needed bidirectional transmission with direct

linkage between nodes, fast reception of packages and minimization of the number of packets drops.

First the decision for the type of microcontroller and transceivers was faced where it was decided that

an integrated microcontroller with an integrated antenna was the best approach, at first an attempt was

made to find this device from Microchip due to our experience with their tools, however their wireless

development board was more expensive than other similar products and not many low power

capabilities were found. Therefore other low power alternatives were explored, with the MSP430F2274

integrated with the CC2500 transceiver into the EZ430F2500 which was chosen as the finalist. Further

research pointed to three different possible wireless configurations: The access point end device

configuration, the end device end device configuration and the peer to peer configuration all with their

advantages and drawbacks. The access point end device configuration proved to be very fast but lacked

bi directional communication and so was discarded from the options. The end device end device

configuration did not establish direct linkage between nodes but instead worked with a series of fast

transmissions which were issued repetitively and no acknowledgement was required, this resulted in a

considerable amount of lost packets when decreasing speeds below a certain threshold. Therefore the

Peer to peer configuration was used with bi-directional communication, improved speed and a

minimum amount of dropped packets.

Wireless Transmission

Two design decisions were made for wireless transmission; the transmission speed was finally set to be

25ms. This decision was based on reducing the transmission delay to a minimum but still maintaining a

constant transmission of packets and a constant operation of the other operations than needed to be

run concurrently when transmitting. At the other end (TECM) the implementation of a semaphore was

done to prevent pre-emption of the transmission code when the reception interrupt was triggered

which would cause problems in synchronization. This decision proved to be important when the rate of

transmission was increased to 25 ms.

Wireless Reception

Reception of data was done interrupt driven; this allowed for a reduction in power consumption since

now the reception code was only executed when a frame was ready to be received. The subscription of

the receive function upon the reception of new packages gave us the flexibility to turn the whole system

on or off by simply setting the radio to idle mode and then turn in it back on. This ability allowed us

incorporate a push button where the user could turn the system off (e.g. when going to sleep) and put it

in lowest power mode and then turn it back on when needed.

 Vibrotactile Transducer Control

Initially, the use of PWM generation was being used to create the desired sine wave to drive the

vibrotactile transducer. This soon proved to be inefficient and slow. Instead, a look up table was used to

create the initial output that would then be modulated based on the force seen at the end manipulator.

This method was more elegant and effective than the initial PWM scheme as it did not take as much

post processing circuitry.

 Hogan, Pritchett & Tejeiro

25 | P a g e

Robotic Manipulator

The robotic manipulator was built using a MPI MAXX servo. This specific servo was selected because it

utilizes metal gears which provide the torque necessary to power the arms without slipping. While the

servo has 180 degrees of motion, human fingers only move roughly 90 degrees. In order to give more

control over the fingers, rationed gears were used so that the servo would move through its full range of

motion, but the fingers only half that.

Force Feedback

In order to provide accurate feedback a total of three FSRs were utilized (one at the tip of each finger).

Due to limited A/D channels on the msp430, these forces were averaged together in hardware and

sampled at one A/D port. This increased the overall accuracy of the pressure measurements, based

upon or test case of picking up a plastic cup, but for cases where only one finger experienced force this

setup would not provide accurate feedback.

Hardware Implementation

Block Diagram
EMG Reference

EMG 1

EMG 2

FSR 1

FSR 2

Low Noise Power
Amplifier

Low Noise Power
Amplifier

A/D

Tx 1

A/D

TECM

Sine
Wave
Gen

Rx 1

Tx 2

MFCM

Rx 2

PWM
Gen

10-bit
Serial
D/A

Tactor

Servo
End

Effector
FSR 3

FSR
Average
Circuit

Filter and
Power
Amp

Circuit

Figure 5 Hardware Block Diagram

Discussion of Modules

EMG

The hardware part of the EMG circuit involved the design of an EMG acquisition circuit which was built

using discrete analog components. The Motor Unit Action Potential (MUAP) was recorded in two places:

Biceps and Flexor Carpi Ulnaris. The difference in potential was measured across two points along the

targeted muscle referenced to a ground point which was chosen to be the bony part close to your

elbow. The signal gathered from the two muscle electrodes was sent into two buffers to isolate the

 Hogan, Pritchett & Tejeiro

26 | P a g e

input signal and provide driving capacity. Then these pair of signals was introduced into a differential

amplifier and the common mode rejection ratio was chosen to be as high as possible (CMMR ~ 90) to

reject common mode noise (mostly 60 Hz from electrical wiring). Then the signal was amplified using an

inverting amplifier scheme to put it as close to rail as possible under maximum input signal amplitude.

This amplified signal was passed through a bypass capacitor to center the signal at 0 volts. Then a

further inverting amplifier was added to invert the signal back to its original state and take the

amplitude as close to negative and positive rail. Then an active full wave rectifier was used to invert the

negative peaks of the signal, after that an active inverting low pass filter in an inverting configuration

with a cutoff frequency of ~3 Hz was used to take the running average of the signal. Finally another

inverting amplifier was used to bring back the signal to its original state and a potentiometer was put in

the feedback loop to provide variable gain for targeting different muscles. A calibration circuit was also

added to provide input signals at very low amplitudes for testing of the circuit without the need for a

human subject.

Wireless Communication

The Ez430-RF2500 has a complete integrated interface between the MSP430 microcontroller and the

CC2500 transceiver (ISM band multi-channel low power, low range transceiver 2.4 MHz – 2.4835 MHz).

The CC2500 transceiver has an integrated ceramic antenna and communicates with the MSP430

microcontroller through an SPI protocol, The CC2500 also has integrated analog circuitry to allow for

frequency hopping and multi-channel operation as well as frequency compensation and an integrated

analog temperature sensor. The Ez430-RF2500 also has the ability to operate from 1.8 to 3.6 supplies

and can put both the transceiver and itself in sleep mode and low power mode respectively.

Robotic Manipulator

For the manipulator built in timers A0 and B0 were utilized to provide the timing of the digital out to the

servo. A0 counted to 20ms, while B0 These had various control registers which were set in software to

provide the correct period.

Force Feedback

In order to provide accurate feedback a total of .5 inch three FSRs were utilized (one at the tip of each

finger). Due to limited A/D channels on the msp430, these forces were averaged together in hardware

using the circuit provided below. It is a simple passive average where the voltages are provided by the

FSRs. The resistance values were chosen to cancel each other out and limit current into the A/D

converter, in this case 10 kilo ohms each.

 Hogan, Pritchett & Tejeiro

27 | P a g e

Figure 6: averaging circuit source: all about circuits.com

Vibrotactile Transducer Control

The hardware involved in the tactor control consists of various filtering and amplification elements. The

first component encountered by the output of the TECM is a 10-bit high speed digital to analog

converter. This is used to create a variable amplitude sine wave based on force. The output of the DAC

needs to be filtered to get the desired 250 Hz smooth sine wave. This is done using a passive 2nd order

low pass filter consisting of appropriate cascaded RC networks. As this signal does not have any driving

capabilities it is necessary to fist provided voltage amplification and then current amplification. This is

done by cascading a simple non-inverting amplifier with a gain of 5 V/V and then sending that to a

Darlington coupled power transistor. The final signal generated is a 0 Vpp to 3.6 Vpp sine wave that is

capable of driving the vibrotactile transducer.

Design Choices

EMG

Several design choices were made when building the EMG acquisition circuit, the first was whether to

use a pre-built instrumentation amplifier with a very high set common mode rejection ratio (110) and

laser trimmed resistors. This instrumentation amplifier was purchased but the group preferred to build

the instrumentation amplifier from scratch using discrete op amps and resistors to learn the basic

intuition behind instrumentation amplifiers, the use of differential amplifiers and gathering signals from

noisy environments such as the human body. Note that a notch filter at 60 Hz was not used because a

lot of useful information is stored at this frequency. The next design choice was whether to use a series

of inverting amplifiers or to use non inverting amplifiers, in this case inverting amplifier proved to be a

better choice since it was easier to amplify the signal coming out from the instrumentation amplifier and

then centered at zero and then further amplify it to the supply rails, the same was true for the last stage

where we drove the rectified signal to its maximum level and then use the last inverting op amp with a

potentiometer in its feedback loop to attenuate it if needed.

 Hogan, Pritchett & Tejeiro

28 | P a g e

Robotic Manipulator

For the manipulator it was decided to utilize hardware interrupts to generate the PWM over using a

software timer or polling. This was decided upon because the hardware provided much more accurate

results, which are required for servo manipulation. If the output pulse had differed by any value, the

servo would have moved at the wrong time. This would lead to the manipulator shifting around when it

should be steady. The hardware timers provide the required accuracy to keep the manipulator steady.

Force Feedback

For the force feedback it was decided to use a simple averaging circuit as opposed to a more complex

one due to a combination of cost and comparative accuracy. While a complex circuit gives marginally

superior results, the added costs and complexity of design did not warrant this design approach. In order

to provide accurate feedback a total of .5 inch three FSRs were utilized (one at the tip of each finger).

Due to limited A/D channels on the msp430, these forces were averaged together in hardware using the

circuit provided below. It is a simple passive average where the voltages are provided by the FSRs. The

resistance values were chosen to cancel each other out and limit current into the A/D converter, in this

case 10 kilo ohms each.

Vibrotactile Transducer Control

As mentioned previously, Pulse Width Modulation was originally used to generate the sine wave though

this soon proved to be a lesser technique when compared to high speed DAC generation. The main

advantage of using the later method is the elegance of code needed to accomplish the task. Also, higher

order active filtering was necessary to obtain a sine wave that was still lesser quality than that garnered

from simple 2nd order passive filtering. The specific DAC module was chose based on its speed in

conversion settling time as well as serial input capabilities. The filter used was created based on the

desired frequency and the amplification was created based on the power requisites of the transducer

which stated optimal driving occurred with 250 Hz sine wave bursts at 500 mW. The final power

generated by the elements constituent to the tactor control are capable of provided values around 430

mW.

Testing

Test Plan

In order to determine if this system is functioning correctly an in depth series of test cases were

developed to verify that each subsystem and the overall system preform as expected. This includes

speed, power consumption (static and dynamic) and accuracy. Each individual subsystem was isolated

and fully verified using a combination of the Tektronix logic analyzer for functionality accuracy, a DMM

for power consumption and operating voltages, and an oscilloscope for verifying operating speed. In

order to verify that the measurements taken are accurate, replace various dynamic inputs with fixed

known values and compared to the resulting values displayed on the logic analyzer.

In addition to testing for normal operating conditions, the operating limits were also tested. This

includes operating voltages and input voltages.

 Hogan, Pritchett & Tejeiro

29 | P a g e

Test Specification

Due to the complexity of the overall system, testing was broken up into each of the subsystems.

Therefore each subsystem will have individual test specifications and will build upon each other until the

final overall system can be tested. These test specifications will determine whether the system is

functioning as required by the system specification. The inputs and outputs of each subsystem are

detailed below in individual charts. For information on how to actually test these specifications, see the

test cases section.

EMG Acquisition

INPUT ANALOG OUTPUT DIGITAL VALUE

Low

Activity
0V 0V

Medium

Activity
1V 324

High

Activity
2V 621

Servo Control

INPUT OUTPUT(DEGREES)

 1ms 0

1.5ms 90

2.0ms 180

Force Sensing

FORCE

INPUT

ANALOG

OUTPUT

No

Pressure

 100 mV

 Low

Pressure

1.36 V

 Medium

Pressure

 3.41 V

 High

Pressure

 4.73 V

Feedback

DIGITAL

VALUE

DIGITAL

OUTPUT

DAC

OUTPUT

SCALED

OUTPUT

 Hogan, Pritchett & Tejeiro

30 | P a g e

 0 0 0 0v

465 465 1.5v 2.27v

 775 775 2.5v 3.8v

1024 1024 3.3v 5v

System integration

EMG INPUT

(peak to peak)

SCALED OUTPUT

(peak to peak)

0v 0v

3v 1.5v

5v 2.5v

7.2v 3.6v

Test Cases

Due to the complexity of the overall system, testing was broken up into each of the subsystems.

Therefore each subsystem will have individual test cases and will build upon each other until the final

overall system can be tested. These test cases will determine whether the system is functioning as

required by the system specification.

EMG Acquisition

The EMG acquisition module is composed of three parts: the sensors, amplifier, and analog to digital

converter. First check the A/D converter by directly inputting know values from a power supply, and

read them into the MSP430 and output them on digital output pins at a frequency of 1MHz and display

them on the logic analyzer. Verify that the corresponding digital value is equivalent to the analog values.

Once this has been verified add the amplifier output to the A/D input. Input a sine wave to the amplifier

and again read out the values on the logic analyzer and make sure that the gain is correct. Finally

integrate the actual sensor and run the test again.

RF Communication

 To test the RF communications load predefined data into the local terminal and transmit it to the

remote. At the remote terminal, output the data received onto digital outs and display them on a logic

analyzer. Repeat for the remote to local. Then integrate with the human body sensor, by transmitting

the digital value from the body to the remote and back to the local for display.

Servo Control

To test the servo, output PWMs from the micro controller and verify that the gear spins the correct

amount of degrees in each direction.

 Hogan, Pritchett & Tejeiro

31 | P a g e

Force Sensor

To test the force sensor apply a known force and read the resulting analog voltage on a DMM. Verify the

analog voltage corresponds to the applied force.

Feedback

The feedback consists of three stages, a DAC, sine wave generator and a voltage scalar. First output a

digital value from the microcontroller to the DAC and read out the analog value on a DMM. Verify its

functionality. Next output PWMs from the microcontroller into a low pass filter. Verify that it is at 250

Hz using an oscilloscope. Finally use the output of the DAC to scale the sine wave. This is the output to

the tactor, which is providing vibrational feedback to the user.

System integration

Finally integrate the whole system together. Use the leads on a function generator(to eliminate the

differences in different peoples strength) to provide electrical pulses to the system. Visually verify that

the servo is gripping correctly (displayed on an oscilloscope) and releasing based upon the input voltage

(displayed on a DMM). Also verify the amplitude of the feedback. All of these values should be

proportional to each other for all values inputted by the electrodes. Finally hook the electrodes up to to

a human arm and verify that the system is working using the same approach.

Power Consumption

Use a DMM in current mode to verify current computation by passing the ground through its terminals

and recording the corresponding values. Use these to verify power consumption.

Results
The results for overall system are detailed below. Each subsystem was tested thoroughly following the

test cases mentioned above, but to avoid repetition in relaying results, only the overall systems results

are detailed below.

As described in the above report, there is a lot of noise affecting the acquisition of EMG signals. The first

step in the system was therefore to isolate those signals using the EMG circuit. 7 displays the EMG

circuit output that is not averaged, and is followed by figure 9, the averaged values. As can be seen

there is limited noise. The averaged values are the ones that went into the system.

 Hogan, Pritchett & Tejeiro

32 | P a g e

Figure 7 Raw EMG signal from user

Figure 8 Filtered EMG signal from user

-1

-0.5

0

0.5

1

1.5

2

2.5

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

V
o

lt
a

g
e

 (
V

)

Time (s)

EMG Circuit Output (Not Filtered)

High Activity

Low Activity

0

0.5

1

1.5

2

2.5

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

V
o

lt
a

g
e

 (
V

)

Time (s)

EMG Circuit Output (Filtered)

Low Activity

High Activity

 Hogan, Pritchett & Tejeiro

33 | P a g e

Figure 9 Averaged EMG signal

After the EMG signal was captured, it was transmitted to the robotic manipulator. The results of high

activity and low activity are displayed below in figure 10. As can be seen, relaxed (the blue pulse is at 1

ms (completely open fingers), while a maximum flex resulted in a 2 ms pulse (completely closed). This

was exactly as expected.

Figure 10 PWM input to servo of end effector

On each of the fingers was a FSR. Figure 11 below show the resulting voltage from both low pressure

and high pressure. Again these results were as expected and verified correct functionality of both the

resistors and the averaging circuit.

0

0.5

1

1.5

2

2.5

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

V
o

lt
a

g
e

 (
V

)

Time (s)

Average EMG Signal

Low Activity

High Activity

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-0.015 -0.01 -0.005 0 0.005 0.01 0.015

V
o

lt
a

g
e

 (
V

)

Time (s)

Manipulator Servo Input

No Activity

High Activity

 Hogan, Pritchett & Tejeiro

34 | P a g e

Figure 11 Force sensing array output from manipulator

Finally the voltage from the FSRs was transmitted to the local controller and outputted as a scaled sine

wave. Figure 12 shows the resulting outputs of the scaled sine waves at low, medium and high force.

Figure 12 Final Feedback Output

The sequence detailed above functioned almost exactly as expected, with only one minor glitch (as

reported below in error analysis). The timing was excellent, with no noticeable lag between applying an

EMG force and receiving the haptic feedback. Power consumption was okay, ranging from 30mA to 50

mA during operation, but when the servo was engaged large current spikes of up to 300 mA were

observed. Depending how heavy the usage of this system is, this could severely limit battery life, and

needs to be addressed in future designs.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

V
o

lt
a

g
e

 (
V

)

Time(s)

Force Sensing Resistor Output

High Pressure

Low Pressure

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-0.04 -0.02 0 0.02 0.04

V
o

lt
a

g
e

 (
V

)

Time (s)

Vibrotactile Transducer Input

High Force

Medium Force

Low Force

 Hogan, Pritchett & Tejeiro

35 | P a g e

Error Analysis
The biggest error encountered during this project was one involving the scheduling of tasks. As there is a

hard requirement to generate the transmission of both the force and EMG signals such that human

perception is not compromised, a sacrifice in the output of the servo control was made. Specifically, to

ensure that transmission is conducted seamlessly, it was necessary to allow its preemption of the output

generation. This sometimes results in the jittering of the PWM signal to the servo. Numerous techniques

were incorporated to attempt to remedy this. This included the disabling of the receive interrupt, this

however compromised the fidelity of transmission and was not sustainable. In the end a work around

was implemented by decreasing to the transmission speed such that it would not preempt the servo

control as often.

Summary
A vibrotactile feedback system was generated in this project using a combination of embedded

microcontroller and analog devices. This provides an inexpensive method for upper limb amputees to

garner significant system response that can be integrated in their existing prostheses. Specifically, Texas

Instrument’s MSP430 microcontroller was used to create a system network responsible for acquiring

end manipulator force and then transmitting it to a vibrotactile transducer. This provides important

information regarding the force being exerted by the user. Additionally, a second microcontroller was

responsible for acquiring an electromyography signal from the user. It would then process this signal

and use it to generate control signals for the end effector.

Conclusion
Several observations were made during the design and implementation of this project. Particularly, the

significance of human perception was a reoccurring theme. It was discovered that it is imperative to

keep the transmission of the feedback signals to less than 150 ms else the user would begin to notice

ensuing delays. Unfortunately, even though transmission for this system was kept well below this rate,

the interrupt driven nature of the wireless network enabled the preemption of output signals, causing a

small glitch. Further research would be wise to eliminate this issue and make the system as robust as

possible. Research into the interface between the feedback end manipulator and the physical prosthetic

would be necessary to make this system absolutely viable. It is also necessary to investigate the learning

curve of using such a system and the mechanisms implemented by a human body to control such a

device. This includes determining how specific users isolate their personal muscle control in order to

manipulate the end effector.

 Hogan, Pritchett & Tejeiro

36 | P a g e

Appendicies

Appendix A: Bill of Materials

Project Name: Remote Vibrotactile Feedback for Upper Limb Amputees University of Washington
Project Number: 1 Dept. of Electrical Engineering
Revision: A P.O. Box 352500
Date: November 13, 2011 Seattle, Washington 98195-2500

Bill Of Materials

Item Quantity Part Value Rating Description Package Vendor Part No.
Price
Each

1 1 3.6V
Wireless
development Kit

Texas
Instruments

MSP430
RF2500 $49.00

2 2 1uF 25V talium Capacitor radial EE Stockroom $0.40

3 3 10uF 50V
electrolytic
capacitor radial EE Stockroom $0.30

4 2 330uF 50V
electrolytic
capacitor radial EE Stockroom $0.30

5 4 0.1uF 50V ceramic capacitor radial EE Stockroom $0.20

6 1 1000uF 50V
electrolytic
capacitor radial EE Stockroom $0.30

7 2 LMTL074CN
low noise JFET
amp DIP-40 EE Stockroom LMTL074CN $1.20

8 1 MC3403AD op amp DIP-40 EE Stockroom MC3403AD $0.50

9 1 LM 386
audio amplifier, low
noise DIP-40 EE Stockroom LM 386 $1.00

10 5 10k 1/2W
10k potentiometer,
3/4 turn EE Stockroom $0.90

11 1 33k 1/4W 5% resistor axial EE Stockroom $0.10
12 2 150k 1/4W 5% resistor axial EE Stockroom $0.10
13 2 82k 1/4W 5% resistor axial EE Stockroom $0.10
14 1 3.3k 1/4W 5% resistor axial EE Stockroom $0.10
15 1 1k 1/4W 5% resistor axial EE Stockroom $0.10
16 1 2.2k 1/4W 5% resistor axial EE Stockroom $0.10
17 9 1k 1/4W 1% resistor axial EE Stockroom $0.10
18 1 MAXX 400 5V servo amazon.com $9.50
19 1 2W tactor amazon.com $8.00
20 1 roll wire EE Stockroom $1.20
21 4 1.5V battery radio shack $1.20
22 2 9v battery radio shack $3.00

23 3 DIP-2 2W
force sensing
resistor DIP-2

Trossen
Robotics $5.00

24 50 electrodes biomed.com $0.32

TOTAL PARTS COST: $ 123.00

 Hogan, Pritchett & Tejeiro

37 | P a g e

Appendix B: Schematics

Figure 13 EMG Acquisition Circuit Schematic

10-bit
D/A

LTC1661
MSP430

~CS

Clk

Din

6.24K

.01u .01u

10K 3.9K

1K 10K

10K

10K
5K

6.24K

Figure 14 Sine Wave Generation Circuit Schematic

 Hogan, Pritchett & Tejeiro

38 | P a g e

Appendix C: Gant Chart

ID Task Name Start Finish Duration
Nov 6 2011 Nov 13 2011 Nov 20 2011 Nov 27 2011 Dec 4 2011 Dec 11 2011

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13

1 6d11/15/201111/8/2011Force Analysis

2 5d11/16/201111/10/2011Force hardware

3 3d11/16/201111/14/2011Force Software

4 7d11/28/201111/18/2011Wireless Analysis

5 4d11/23/201111/18/2011Wireless hardware

6 4d11/23/201111/18/2011Wireless software

7 10d12/2/201111/21/2011Sine wave analysis

8 9d12/2/201111/22/2011Sine wave hardware

9 8d12/2/201111/23/2011Sine wave sofware

10 11d11/22/201111/8/2011Power amp hardware

11 4d11/15/201111/10/2011Power amp software

12 8d11/22/201111/11/2011Tactor analysis

13 6d11/14/201111/7/2011Tactor hardware

14 10d11/21/201111/8/2011EMG hardware

15 4d11/11/201111/8/2011Emg software

16 10d11/28/201111/15/2011Servo control

Names

Zach

Cody

zach

cody

zach

camilo

camilo

cody

zach

cody

camilo

camilo

zach

cody

camilo

cody

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

% Complete

19 0%czc10d12/8/201111/25/2011Optional Display

17 0%czc12d12/12/201111/25/2011Testing

18 0%czc4d12/13/201112/8/2011Report

 Hogan, Pritchett & Tejeiro

39 | P a g e

Appendix E: Code

Tactor and EMG Control Module Code
/***:)*
 * End Device 1 – TECM (Link To 1) (address 78)
 *
 * - Receives force and creates sine to
 * drive tactor
 * - End Device one links to the network and
 * starts comunications with the End Device 2
 *
 * Authors: Zach Pritchett
 * Cody Hogan
 * Camilo Tejeiro
 *
 * Note: the wireless communication was implemented
 * using the peer to peer protocol from
 * TI SimpliciTI and example code from their
 * website.
 **:)*/

/**:)*
 * include statements
 **:)*/
#include "bsp.h"
#include "mrfi.h"
#include "nwk_types.h"
#include "nwk_api.h"
#include "bsp_leds.h"
#include "bsp_buttons.h"
#include "app_remap_led.h"
#include "msp430x22x4.h"

/**:)*
 * Function Declarations
 **:)*/
static void transmit (void);
void toggleLED (uint8_t);
static uint8_t receive (linkID_t);
void delay (unsigned int BlinkCount);
unsigned int getEMG (void);
void DACsetLines (unsigned int dig_value);

/**:)*
 * Globals
 **:)*/
static linkID_t sLinkID1 = 0;
unsigned int force ;
unsigned int sine_wave [9] = {6,9,11,10,7,4,1,0,2};
unsigned int index = 0;

/**:)*
 * defines
 **:)*/
#define SPIN_ABOUT_A_SECOND NWK_DELAY(1000)

// Main Executable
void main (void)
{
 WDTCTL = WDTPW + WDTHOLD; // Stop WDT
 BSP_Init (); // board support package
 // initialization
 P2DIR &= 0xFE; // set direction for
 // port 2
 P2DIR |= 0x0E;
 P4DIR |= 0x08 ; // P4.0 output

 Hogan, Pritchett & Tejeiro

40 | P a g e

 /* This call will fail because the join will fail s ince there is no Access Point
 * in this scenario. But we don't care -- just u se the default link token later.
 * We supply a callback pointer to handle the me ssage returned by the peer.
 */
 SMPL_Init (receive);

 /* turn on LEDs. */
 if (!BSP_LED2_IS_ON())
 {
 toggleLED (2);
 }
 if (!BSP_LED1_IS_ON())
 {
 toggleLED (1);
 }

 /* wait for a button press... */
 do
 {
 if (BSP_BUTTON1() || BSP_BUTTON2())
 {
 break;
 }
 }
 while (1);

 // start transmit, should not come out
 transmit ();

 // to be safe
 while (1) ;
}

/**:)*
* function name: Transmit
* function inputs: void
* function outputs: void
* function description:establishes the conection
* with the END device 2 and sends the EMG signal to
* the END device 2, also sets up the sine interrupt
*
* author: Zach Pritchett
* Cody Hogan
* Camilo Tejeiro
***:)*/
static void transmit ()
{
 unsigned int EMG;
 uint8_t msg [3];

 while (SMPL_SUCCESS != SMPL_Link (&sLinkID1))
 {
 /* blink LEDs until we link successfully */
 toggleLED (1);
 toggleLED (2);
 SPIN_ABOUT_A_SECOND ;
 }

 /* we're linked. turn off red LED. received message s will toggle the green LED. */
 if (BSP_LED2_IS_ON())
 {
 toggleLED (2);
 }

 /* turn on RX. default is RX off. */
 SMPL_Ioctl (IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_RXON, 0);

 /* put LED to toggle in the message */

 Hogan, Pritchett & Tejeiro

41 | P a g e

 msg [0] = 2; /* toggle red */

 TACCTL0 = CCIE ; // TACCR0 interrupt enabled
 TACCR0 = 3552; // output every value for a complete sine
 // wave 4mS/9
 TACTL = TASSEL_2 + MC_1; // SMCLK, contmode
 _BIS_SR (GIE); // Enter w/ interrupt

 while (1)
 {
 NWK_DELAY (25); // transmit every 25 mS
 EMG = getEMG (); // read the EMG from circuit
 msg [1] = EMG&0xFF; // break the EMG data in two
 // bytes, put into two messages
 msg [2] = (EMG>>8)&0xFF;

 SMPL_Send (sLinkID1 , msg , sizeof(msg)); // transmit messages
 }
}

/**:)*
* function name: get EMG
* function inputs: void
* function outputs: digital EMG value
* function description:Read the analog values
* from the EMG circuit convert to digital
* and return this value to the calling statement
*
* note: done based on ADC interrrupt
* upon conversion
* author: Zach Pritchett
* Cody Hogan
* Camilo Tejeiro
***:)*/
unsigned int getEMG ()
{
 unsigned int EMG;
 // done under less power demanding characteristics
 ADC10CTL1 = INCH_0 ; // channel A0 selsected for
conversion
 ADC10CTL0 = SREF_0 + ADC10SHT_3 + ADC10ON + ADC10IE + ADC10SR; // reference VCC= 3.6V
 // sample and hold time of
64*ADC clock,
 // no need to be faster, more
accurate

 __delay_cycles (250); // delay to allow reference to
settle
 ADC10CTL0 |= ENC + ADC10SC; // Sampling and conversion
start
 __bis_SR_register (GIE); // LPM0 with interrupts
enabled
 EMG = (unsigned int)(ADC10MEM); // put the result as an
unsigned int into
 EMG = EMG-(unsigned int)(EMG*0.1526); // results array

 ADC10CTL0 &= ~ENC; // turn ADC module off
 ADC10CTL0 &= ~(REFON + ADC10ON); // turn off A/D to save power

 return EMG;
}

/**:)*
* function name: toggleLED
* function inputs: unsigned int which
* function outputs: void
* function description: toggle a certain LED
* for debugging purposes
*
* author: taken from TI sample code examples

 Hogan, Pritchett & Tejeiro

42 | P a g e

***:)*/
void toggleLED (uint8_t which)
{
 if (1 == which)
 {
 BSP_TOGGLE_LED1 ();
 }
 else if (2 == which)
 {
 BSP_TOGGLE_LED2 ();
 }
 return;
}

/**:)*
* function name: DAC Set Lines
* function inputs: digital value for conversion to
* analog
* function outputs: void
* function description:digital to analog conversion
* done serially, used to output values for the sine
* wave generation
*
* author: Zach Pritchett
* Cody Hogan
* Camilo Tejeiro
***:)*/
void DACsetLines (unsigned int dig_value)
{
 unsigned int ctl_code = 10240 ;
 unsigned int input_word = (ctl_code + dig_value) << 2;
 int shift = 15;
 unsigned int temp = 0;

 P2OUT &= ~BIT1 ; // Input load low
 while(shift != -1)
 {
 temp = input_word >> shift ;
 if(temp & 0x0001)
 {
 P2OUT |= BIT3 ; // Data high
 P2OUT |= BIT2 ; // SCLK high
 }else
 {
 P2OUT &= ~BIT3 ; // Data low
 P2OUT |= BIT2 ; // SCLK high
 }
 P2OUT &= ~BIT2 ; // SCLK low
 shift --;
 }
 P2OUT |= BIT1 ; // Input load high

}

/**:)*
* function name: Receive
* function inputs: port to link to
* function outputs: unsigned int status of receptio n
* function description:handle received messages fro m
* End device 2
*
* author: Zach Pritchett
* Cody Hogan
* Camilo Tejeiro
* TI sample code
***:)*/
static uint8_t receive (linkID_t port)
{

 Hogan, Pritchett & Tejeiro

43 | P a g e

 uint8_t msg [3], len ;

 /* is the callback for the link ID we want to handl e? */
 if (port == sLinkID1)
 {
 /* yes. go get the frame. we know this call will su cceed. */
 if ((SMPL_SUCCESS == SMPL_Receive (sLinkID1 , msg , &len)) && len)
 {
 /* Check the application sequence number to detect
 * late or missing frames...
 */

 /* we're good. toggle LED in the message */
 toggleLED (*msg);
 force = msg [1] + (msg[2]<<8);

 return 1;
 }
 }

 /* keep frame for later handling. */
 return 0;

}
/**:)*
* function name: Delay
* function inputs: unsigned int BlinkCount
* function outputs: void
* function description: interrupt driven delay
*
* author: TI sample code
***:)*/
void delay (unsigned int BlinkCount)
{
 int TimerTemp ;
 TimerTemp = TBCCR0; // Save current content of TBCCR0
 TBCCR0 = BlinkCount ; // Set new TBCCR0 delay
 TBCTL |= TBCLR; // Clear TBR counter
 TBCCTL0 &= ~CCIFG; // Clear CCIFG Flag
 TBCTL |= MC_1; // Start Timer B
 __bis_SR_register (LPM3_bits + GIE); // Enter LPM3
 TBCTL &= ~(MC_1); // Stop Timer B
 TBCCR0 = TimerTemp ;
}

/**:)*
* function name: ADC10_ISR
* function inputs: Void
* function outputs: void
* function description: ISR gets executed upon
* termination of the A/D conversion
*
* author: Zach Pritchett
* Cody Hogan
* Camilo Tejeiro
***:)*/
#pragma vector=ADC10_VECTOR
__interrupt void ADC10_ISR (void)
{
 __bic_SR_register_on_exit (LPM0_bits); // Clear CPUOFF bit from 0(SR)
}

/**:)*
* function name: Timer_A ISR
* function inputs: Void
* function outputs: void
* function description: ISR gets executed upon
* reach of the CCR0 value for timer A0.
*
* here is where we output the lines for the
* sine wave generation every 4mS/9

 Hogan, Pritchett & Tejeiro

44 | P a g e

*
* author: Zach Pritchett
* Cody Hogan
* Camilo Tejeiro
***:)*/
#pragma vector=TIMERA0_VECTOR
__interrupt void Timer_A (void)
{
 DACsetLines (0.1 *force *sine_wave [index]);
 index ++;
 if(index >= 9) index = 0;
 P4OUT ^= 0x08 ; // Toggle P1.0
 TACCR0 = 3552; // Add Offset to TACCR0
}

Manipulator and Force Control Module Code
/***:)*
 * End Device 2 – MFCM (Link Listen 2) (address 87)
 *
 * - Receives Force and drives servo manipulator to
 * - End Device 2 lsitens for linking and
 * establishes comunications with the End Device 1
 *
 * Authors: Zach Pritchett
 * Cody Hogan
 * Camilo Tejeiro
 *
 * Note: the wireless communication was implemented
 * using the peer to peer protocol from
 * TI SimpliciTI and example code from their
 * website.
 **:)*/

/**:)*
 * include statements
 **:)*/
#include "bsp.h"
#include "mrfi.h"
#include "nwk_types.h"
#include "nwk_api.h"
#include "bsp_leds.h"
#include "bsp_buttons.h"
#include "app_remap_led.h"
#include "msp430x22x4.h"

/**:)*
 * Function Declarations
 **:)*/
static void transmit (void);
void toggleLED (uint8_t);
unsigned int getForce ();
void delay (unsigned int BlinkCount);
static uint8_t receive (linkID_t);

/**:)*
 * Globals
 **:)*/
static linkID_t sLinkID2 = 0;
static volatile uint8_t sSemaphore = 0;
unsigned int EMG;
unsigned int servoVal = 5000;
unsigned int off = 0x0000 ;
unsigned char counter = 0; // Current location in wave array
unsigned char CCR0_INDEX = 0;

// main executable
void main (void)

 Hogan, Pritchett & Tejeiro

45 | P a g e

{
 WDTCTL = WDTPW + WDTHOLD; // Stop WDT
 BSP_Init ();

 P2DIR |= 0x0D; // port 2.1 set as input

 /* This call will fail because the join will fail s ince there is no Access Point
 * in this scenario. But we don't care -- just u se the default link token later.
 * We supply a callback pointer to handle the me ssage returned by the peer.
 */
 SMPL_Init (receive);

 /* turn on LEDs. */
 if (!BSP_LED2_IS_ON())
 {
 toggleLED (2);
 }
 if (!BSP_LED1_IS_ON())
 {
 toggleLED (1);
 }

 /* wait for a button press... */
 do
 {
 if (BSP_BUTTON1() || BSP_BUTTON2())
 {
 break;
 }
 } while (1);

 CCTL0 = CCIE ; // CCR0 interrupt enabled
 CCTL1 = CCIE ; // CCR1 interrupt enabled
 CCR0 = 27340 ; // Set PWM period to 27340 clock ticks emperically measured to be 20.7 mSec
 CCR1 = 5000; // Set first duty cycle value to 0.600mS
 TACTL = TASSEL_2 + MC_1 + TAIE + TACLR; // SMCLK, upmode, enable interrupt, clear TA1R

 // start transmission
 transmit ();

 //just for safety
 while (1) ;
}

/**:)*
* function name: Transmit
* function inputs: void
* function outputs: void
* function description:establishes the conection
* with the END device 1 and sends the force signal to
* the END device 1, also sets up the PWM interrupt
* to establish period and pulse width
*
* author: Zach Pritchett
* Cody Hogan
* Camilo Tejeiro
***:)*/
static void transmit ()
{
 uint8_t msg [3];
 unsigned int force ;
 /* Turn off one LED so we can tell the device is no w listening.
 * Received messages will toggle the other LED.
 */
 toggleLED (1);

 /* listen for link forever... */
 while (1)
 {
 if (SMPL_SUCCESS == SMPL_LinkListen (&sLinkID2))

 Hogan, Pritchett & Tejeiro

46 | P a g e

 {
 break;
 }
 /* Implement fail-to-link policy here. otherwise, l isten again. */
 }

 /* turn on LED1 on the peer in response to receivin g a frame. */
 msg [0] = 1;

 /* turn on RX. default is RX off. */
 SMPL_Ioctl (IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_RXON, 0);

 while (1)
 {
 /* Wait for a frame to be received. The Rx handler, which is running in
 * ISR thread, will post to this semaphore all owing the application to
 * send the reply message in the user thread.
 */

 if (sSemaphore)
 {

 force = getForce ();
 msg [1] = force &0xFF;
 msg [2] = (force >>8)&0xFF;
 SMPL_Send (sLinkID2 , msg , sizeof(msg));

 /* Reset semaphore. This is not properly protected and there is a race
 * here. In theory we could miss a message. Good enough for a demo, though.
 */
 sSemaphore = 0;
 }
 }
}

/**:)*
* function name: toggleLED
* function inputs: unsigned int which
* function outputs: void
* function description: toggle a certain LED
* for debugging purposes
*
* author: taken from TI sample code examples
***:)*/
void toggleLED (uint8_t which)
{
 if (1 == which)
 {
 BSP_TOGGLE_LED1 ();
 }
 else if (2 == which)
 {
 BSP_TOGGLE_LED2 ();
 }
 return;
}

/**:)*
* function name: getForce
* function inputs: void
* function outputs: digital Force value
* function description:Read the analog values
* from the force averager circuit, convert
* to digital and return this value to
* the calling statement
*
* note: done based on ADC interrrupt
* upon conversion
* author: Zach Pritchett
* Cody Hogan

 Hogan, Pritchett & Tejeiro

47 | P a g e

* Camilo Tejeiro
***:)*/
unsigned int getForce ()
{
 unsigned int force ;
 // done under less power demanding characteristics
 ADC10CTL1 = INCH_1 ; // channel A0 selsected for
conversion
 ADC10CTL0 = SREF_0 + ADC10SHT_3 + ADC10ON + ADC10IE + ADC10SR; // reference VCC= 3.6V
 // sample and hold time of
64*ADC clock,
 // no need to be faster, more
accurate

 __delay_cycles (250); // delay to allow reference to
settle
 ADC10CTL0 |= ENC + ADC10SC; // Sampling and conversion
start
 __bis_SR_register (LPM0_bits + GIE); // LPM0 with interrupts
enabled
 force = (unsigned int)(ADC10MEM); // put the result as an
unsigned int into
 force = force -(unsigned int)(force *0.1526); // results array

 ADC10CTL0 &= ~ENC; // turn ADC module off
 ADC10CTL0 &= ~(REFON + ADC10ON); // turn off A/D to save power

 return force ;
}

/**:)*
* function name: Receive
* function inputs: port to link to
* function outputs: unsigned int status of receptio n
* function description:handle received messages fro m
* End device 1
*
* author: Zach Pritchett
* Cody Hogan
* Camilo Tejeiro
* TI sample code
***:)*/
static uint8_t receive (linkID_t port)
{
 uint8_t msg [3], len ;

 /* is the callback for the link ID we want to handl e? */
 if (port == sLinkID2)
 {
 /* yes. go get the frame. we know this call will su cceed. */
 if ((SMPL_SUCCESS == SMPL_Receive (sLinkID2 , msg , &len)) && len)
 {
 /* Check the application sequence number to detect
 * late or missing frames...
 */

 toggleLED (*msg);
 EMG = msg [1] + (msg[2]<<8);
 // EMG max 750.85324
 // maximun servo value = 16000
 servoVal = 15*EMG + 5000;
 if (EMG > 512)
 {
 BSP_TOGGLE_LED1 ();
 }
 else
 {

 Hogan, Pritchett & Tejeiro

48 | P a g e

 }
 /* Post to the semaphore to let application know so it sends
 * the reply
 */
 sSemaphore = 1;
 /* drop frame. we're done with it. */
 return 1;
 }
 }
 /* keep frame for later handling */
 return 0;
}

/**:)*
* function name: Delay
* function inputs: unsigned int BlinkCount
* function outputs: void
* function description: interrupt driven delay
*
* author: TI sample code
***:)*/
void delay (unsigned int BlinkCount)
{
 int TimerTemp ;
 TimerTemp = TBCCR0; // Save current content of TBCCR0
 TBCCR0 = BlinkCount ; // Set new TBCCR0 delay
 TBCTL |= TBCLR; // Clear TBR counter
 TBCCTL0 &= ~CCIFG; // Clear CCIFG Flag
 TBCTL |= MC_1; // Start Timer B
 __bis_SR_register (LPM3_bits + GIE); // Enter LPM3
 TBCTL &= ~(MC_1); // Stop Timer B
 TBCCR0 = TimerTemp ;
}

/**:)*
* function name: ADC10_ISR
* function inputs: Void
* function outputs: void
* function description: ISR gets executed upon
* termination of the A/D conversion
*
* author: Zach Pritchett
* Cody Hogan
* Camilo Tejeiro
***:)*/
#pragma vector=ADC10_VECTOR
__interrupt void ADC10_ISR (void)
{
 __bic_SR_register_on_exit (LPM0_bits); // Clear CPUOFF bit from 0(SR)
}

/**:)*
* function name: Timer_A ISR
* function inputs: Void
* function outputs: void
* function description: ISR gets executed upon
* reach of the CCR0 value for timer A0.
*
* here is where we determine the period of the
* PWM signal to drive the servo 20 mS
* pulls the line up.
*
* author: Zach Pritchett
* Cody Hogan
* Camilo Tejeiro
***:)*/
#pragma vector = TIMERA0_VECTOR
__interrupt void TIMERA0_ISR (void)
{

 Hogan, Pritchett & Tejeiro

49 | P a g e

 if(CCR0_INDEX == 5){
 CCTL1 = CCIE ; // CCR1 interrupt enabled
 P2OUT |= BIT0 ;
 CCR0_INDEX = 0;
 }else {
 CCR0_INDEX ++;
 }
}

/**:)*
* function name: Timer_A1 ISR
* function inputs: Void
* function outputs: void
* function description: ISR gets executed upon
* reach of the CCR1 value for timer A1.
*
* Here is where pull the line low to determine
* the angle of rotation of the servo
* range: 0.600mS to 2mS
*
* author: Zach Pritchett
* Cody Hogan
* Camilo Tejeiro
***:)*/
#pragma vector = TIMERA1_VECTOR
__interrupt void TIMERA1_ISR (void)
 {

 switch(TAIV)
 {

 case 2: // CCR1 interrupt
 CCTL1 = off ; // CCR1 interrupt enabled
 P2OUT &= ~BIT0 ; // Clear P1.0 to determine duty cycle.
 CCR1 = servoVal ;
 break;
 default:
 break;

 }
}

References

[1] K. Amano, et al., "Estimation of the timing of human visual perception from

magnetoencephalography," J Neurosci, vol. 26, pp. 3981-91, Apr 12 2006.

